
1. QR factorization gives a sequence of matrices {A(0), A(1), A(2), . . .}, where

A(0) =

1 2 9
0 2 1
1 2 −3


Find the QR factorization of A(0) by Gram-Schmidt process. Also com-
pute A(1). Please show all your steps.

Solution:

q1 =
a1

||a1||
=

√
2/2
0√
2/2


q̃2 = a2 − (qT

1 a2)q1

=

2
2
2

− 2
√
2

√
2/2
0√
2/2


=

0
2
0


q2 =

q̃2

||q̃2||
=

0
1
0


q̃3 = a3 − (qT

1 a3)q1 − (qT
2 a3)q2

=

 9
1
−3

− 3
√
2

√
2/2
0√
2/2

− 1

0
1
0


=

 6
0
−6


q3 =

q̃3

||q̃3||
=

 √
2/2
0

−
√
2/2


So,

Q =


√
2
2 0

√
2
2

0 1 −1√
2
2 0 −

√
2
2

 and R =

√
2 2

√
2 3

√
2

0 2 1

0 0 6
√
2


Therefore,

A(1) = RQ =

 4 2
√
2 −2√

2
2 2 −

√
2
2

6 0 −6

 (1)
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2. Let A be a non-singular n× n real matrix. We apply the QR method on
A to obtain a sequence of matrices {A(j)}∞j=0, which satisfies:

A(0) = A;

A(j+1) = R(j)Q(j) for j = 0, 1, 2, ...,

where A(j) = Q(j)R(j) is the QR factorization of A(j). Let k be an integer
greater than 2020. Given that the QR factorizations of Ak−1 and A(k−1)

are given by
Ak−1 = Q1R1 and A(k−1) = Q2R2.

In this question, all QR factorization is obtained in such a way that the
diagonal entries of the upper triangular matrix are positive.

(a) Express A2 in terms of Q(0), Q(1), R(0), and R(1), and show that Ak

can be expressed in terms of Q(0), . . . , Q(k−1) and R(0), . . . , R(k−1).
Please explain your answer in detail.

(b) Express A in terms of Q1, Q2, R1 and R2 only. Please explain your
answer in detail.

(c) Starting from x0, we apply the Power’s method on A as follows:

xj+1 =
Axj

||Axj ||∞
for j = 0, 1, 2, ... .

Write xk in terms of x0, Q1, Q2, R1 and R2 only (without A and k).
Please explain your answer in detail.

Solution:

(a)

A2 =Q(0)R(0)Q(0)R(0)

=Q(0)A(1)R(0)

=Q(0)Q(1)R(1)R(0)

By induction, suppose Ak = Q(0) . . . Q(k−1)R(k−1) . . . R(0), then

Ak+1 = AkA =Q(0) . . . Q(k−1)R(k−1) . . . R(0)(Q(0)R(0))

=Q(0) . . . Q(k−1)R(k−1) . . . (R(0)Q(0))R(0)

=Q(0) . . . Q(k−1)R(k−1) . . . R(1)Q(1)R(1)R(0)

=Q(0) . . . Q(k−1)R(k−1) . . . Q(2)R(2)R(1)R(0)

= . . .

=Q(0) . . . Q(k−1)Q(k)R(k)R(k−1) . . . R(0)

This prove that Ak = Q(0) . . . Q(k−1)R(k−1) . . . R(0).
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(b) Notice that Ak−1 = Q1R1, so

Ak−1 = Q(0)Q(1) · · ·Q(k−2)R(k−2)R(k−3) · · ·R(0) = Q1R1

By the uniqueness of the QR factorisation while restricting the diag-
onal entrie of the upper triangular matrix as positive, we get that

Q(0)Q(1) · · ·Q(k−2) = Q1, R
(k−2)R(k−3) · · ·R(0) = R1

In addition,

Ak = Q(0)Q(1) · · ·Q(k−2)Q2R2R
(k−2)R(k−3) · · ·R(0) = Q1Q2R2R1

since Q2 = Q(k−1) and R2 = R(k−1).
So we get A = R−1

1 Q2R2R1.

(c) It is easy to verify that

xk =
Akx0

∥Akx0∥∞

So xk = Q1Q2R2R1x0

∥Q1Q2R2R1x0∥∞
.

3. Let A ∈ Mn×n(C) be a n×n complex-valued matrix. Suppose the charac-
teristic polynomial of A is given by: fA(t) = (−1)n(t−λ1)(t−λ2)...(t−λn),
where λ1, ..., λn are eigenvalues of A. Assuming that

|λ1| = |λ2| = ... = |λk| > |λk+1| ≥ ... ≥ |λn|,

where k < n. Suppose A = QJQ−1, where J is the Jordan canonical form
of A and Q is an invertible matrix. Assuming that the diagonal entries of
J are arranged in descending order in terms of their magnitudes. Denote
the j-th column of Q by qj , where q1, q2, ..., qk are eigenvectors of A
associated to λ1, λ2,..., λk respectively.

Let x0 be the initial vector defined as x0 = a1q1+a2q2+ ...+anqn, where
aj ∈ C for 1 ≤ j ≤ n and ai ̸= 0 for i = 1, 2, ..., k. Consider the iterative
scheme:

xj+1 =
Axj

||Axj ||∞
for j = 0, 1, 2, ...

(a) Suppose λ1 = λ2 = ... = λk ∈ R. will ||Axj ||∞ always converge
as j → ∞. If yes, what will it converge to? If not, please give a
counter-example and explain your answer with details. Please show
the full details of your proof.

(b) In general, if |λ1| = |λ2| = ... = |λk|, will ||Axj ||∞ always converge
j → ∞? If yes, what will it converge to? If not, please give a counter-
example and explain your answer with details. Please show the full
details of your proof.
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solution:
It’s easy to find for all m ∈ N+

xm =
Axm−1

∥Axm−1∥∞
=

A2xm−2

∥Axm−1∥∞∥Axm−2∥∞
= · · · = Amx0∏m−1

i=0 ∥Axi∥∞
.

On the other side, we have ∥xm∥∞ = 1, so
∏m−1

i=0 ∥Axi∥∞ = ∥Amx0∥∞
and then

xm =
Amx0

∥Amx0∥∞
.

From the definition of x0,

Amx0 =

n∑
i=1

aiλ
m
i qi.

(a) Yes. Given λ1 = λ2 = · · · = λk ∈ R and |λ1| > |λk+1| ≥ |λk+2| ≥
· · · ≥ |λn| > 0, we can split Amx0 into 2 parts,

Amx0 = λm
1

k∑
i=1

aiqi +

n∑
i=k+1

aiλ
m
i qi = λm

1 y + zm.

Whenm is big enough, it’s clear that |λ1|m∥y∥∞ > ∥zm∥∞, limm→∞
∥zm∥∞

|λ1|m∥y∥∞
=

0 and

|λ1|m∥y∥∞ − ∥zm∥∞ ≤ ∥Amx0∥∞ ≤ |λ1|m∥y∥∞ + ∥zm∥∞.

Therefore, for such big m, we have

|λ1|m+1∥y∥∞ − ∥zm+1∥∞
|λ1|m∥y∥∞ + ∥zm∥∞

≤ ∥Axm∥∞ =
∥Am+1x0∥∞
∥Amx0∥∞

≤ |λ1|m+1∥y∥∞ + ∥zm+1∥∞
|λ1|m∥y∥∞ − ∥zm∥∞

.

For the left one,

lim
m→∞

|λ1|m+1∥y∥∞ − ∥zm+1∥∞
|λ1|m∥y∥∞ + ∥zm∥∞

= |λ1|·
1− |λ1| · limm→∞

∥zm+1∥∞
|λ1|m+1∥y∥∞

1 + limm→∞
∥zm∥∞

|λ1|m∥y∥∞

= |λ1|.

Similarly, limm→∞
|λ1|m+1∥y∥∞+∥zm+1∥∞

|λ1|m∥y∥∞−∥zm∥∞
= |λ1|, which means limm→∞ ∥Axm∥∞ =

|λ1|.
(b) No. Suppose

J =

2 0 0
0 −2 0
0 0 1

 , Q =

1 0 1
1 1 0
0 1 1

 , A = QJQ−1 =

 3
2

1
2 − 1

2
2 0 −2
3
2 − 3

2 − 1
2

 ,

Then for A, we have q1 = (1, 1, 0)T , q2 = (0, 1, 1)T , q3 = (1, 0, 1)T ,
λ1 = 2, λ2 = −2 and λ3 = 1.
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Let x0 = q1 + q2 + q3,

Amx0 = (2m + 1, 2m + (−2)m, (−2)m + 1)T .

Whenm is odd, ∥Amx0∥∞ = 2m+1 and whenm is even, ∥Amx0∥∞ =
2m+1, hence

∥Axm∥∞ =
∥Am+1x0∥∞
∥Amx0∥∞

=

{
2− 2

2m+1 ,m is odd
1
2 + 1

2m+1 ,m is even

which means ∥Axm∥∞ diverges.

4. Let A be an n× n complex matrix, whose eigenvalues satisfy:

|λ1| > |λ2| > |λ3| > · · · > |λn| > 0

Also, we define the following:

cos∠(x, y) =
|⟨x, y⟩|
∥x∥∥y∥

;

sin∠(x, y) =
√
1− cos2 ∠(x, y);

tan∠(x, y) =
sin∠(x, y)
cos∠(x, y)

.

If cos∠(x, y) = 0, then let tan∠(x, y) = ∞. Here, ⟨x, y⟩ =
∑n

i=1 xiȳi,
where xi and yi are the i-th entries of x ∈ Cn and y ∈ Cn respectively.

(a) Suppose A = QDQ∗ where Q is unitary (i.e. Q∗Q = I, where Q∗ is
the conjugate transpose of Q) and D is diagonal, prove that

cos∠(Q∗x,Q∗y) = cos∠(x, y).

(b) Consider the power method in the form

x(n) = Ax(n−1)

Assume that cos∠(x(0), e1) ̸= 0, where e1 is the eigenvector associ-
ated to the dominant eigenvalue λ1. Prove that

tan∠(x(m+1), e1) ≤
|λ2|
|λ1|

tan∠(x(m), e1).

(c) For some µ ∈ R, let A− µI be invertible. Assume

|λ1 − µ| < |λ2 − µ| ≤ · · · ≤ |λn − µ|.
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Under the same notations and assumptions in (b), consider the shifted
inverse power iteration

x(m) = (A− µI)−1x(m−1).

Using part (b) or otherwise, prove that

tan∠(x(m+1), e1) ≤
|λ1 − µ|
|λ2 − µ|

tan∠(x(m), e1).

(d) Suppose A is a real matrix, and for x ∈ Rn\ {0}, define the Rayleigh
quotient R(x,A) = x∗Ax

x∗x . Let r be a nonzero eigenvector of A for the
eigenvalue λ, show that

|R(x,A)− λ| ≤ ρ(A− λI) sin∠(x, r) ≤ ρ(A− λI) tan∠(x, r)

(Hint: show that sin∠(x, y) = min
{

∥x−αy∥
∥x∥ : α ∈ R

}
and note that

(A− λI)r = 0)

solution:

(a)

cos∠(Q∗x,Q∗y) =
|⟨Q∗x,Q∗y⟩|
∥Q∗x∥∥Q∗y∥

=
|⟨QQ∗x, y⟩
∥x∥∥y∥

=
|⟨x, y⟩|
∥x∥∥y∥

= cos∠(x, y)

(b) Denote x̂(m) = Q∗x(m), and δ1 be the first column of In

cos2 ∠(x(m), e1) = cos2 ∠(x̂(m), δ1) =
|⟨x̂(m), δ1⟩|2

∥x̂(m)∥2∥δ1∥2
=

|x̂1
(m)|2

∥x̂(m)∥2

sin2 ∠(x(m), e1) = 1− cos2 ∠(x(m), e1) =

∑n
j=2 |x̂j

(m)|2

∥x̂(m)∥2

tan2 ∠(x(m), e1) =
sin2 ∠(x(m), e1)

cos2 ∠(x(m), e1)
=

∑n
j=2 |x̂j

(m)|2

|x̂1
(m)|2

Hence,

tan2 ∠(x(m+1), e1) =

∑n
j=2 |x̂j

(m+1)|2

|x̂1
(m+1)|2

=

∑n
j=2 |λj x̂j

(m)|2

|λ1x̂1
(m)|2

≤
(
|λ2|
|λ1|

)2
∑n

j=2 |x̂j
(m)|2

|x̂1
(m)|2

(c) Let Â = (A− µI)−1 with eigenvalues λ̂j = (λj − µ)−1. Note

Q∗ÂQ = Q∗(A− µI)−1Q = (D − µI)−1 = diag(λ̂j)
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By assumption, we have |λ̂1| > |λ̂2| ≥ · · · ≥ |λ̂n|. Thus we have

tan∠(x(m+1), e1) ≤
|λ̂2|
|λ̂1|

tan∠(x(m), e1)

This completes the proof.

(d) We let α0 := ⟨x, y⟩/∥y∥2 and observe that

⟨x− α0y, y⟩ = ⟨x, y⟩ − ⟨x, y⟩
∥y∥2

⟨y, y⟩ = ⟨x, y⟩ − ⟨x, y⟩ = 0,

i.e., x − α0y and y are perpendicular vectors. For α ∈ R and β :=
α− α0, this implies

∥x− αy∥2 = ∥x− α0y − βy∥2

= ⟨(x− α0y)− βy, (x− α0y)− βy⟩
= ∥x− α0y∥2 − ⟨βy, (x− α0y)⟩ − ⟨(x− α0y), βy⟩+ |β|2∥y∥2

= ∥x− α0y∥2 + |β|2∥y∥2,

i.e., the right-hand side attains its minimum for α = α0. Due to

∥x− α0y∥2 = ∥x∥2 − ᾱ0⟨x, y⟩ − α0⟨y, x⟩+ |α0|2∥y∥2

= ∥x∥2 − |⟨x, y⟩|2

∥y∥2
− |⟨x, y⟩|2

∥y∥2
+

|⟨x, y⟩|2

∥y∥2

= ∥x∥2
(
1− |⟨x, y⟩|2

∥x∥2∥y∥2

)
= ∥x∥2(1− cos2 ∠(x, y)) = ∥x∥2 sin2 ∠(x, y),

this minimum has to be sin∠(x, y).
Since r is an eigenvector, we have (A−λI)r = 0, and we can use the
Cauchy-Schwarz inequality |⟨x, y⟩| ≤ ∥x∥ ∥y∥ and the compatibility
inequality of the spectral norm ∥Ax∥ ≤ ρ(A) ∥x∥ to find

|R(x,A)− λ| =
∣∣∣∣ ⟨Ax, x⟩
⟨x, x⟩

− ⟨λx, x⟩
⟨x, x⟩

∣∣∣∣ = |⟨(A− λI)x, x⟩|
⟨x, x⟩

=
|⟨(A− λI)(x− αr), x⟩|

⟨x, x⟩
≤ ∥(A− λI)(x− αr)∥ ∥x∥

∥x∥2

≤ ρ(A− λI) ∥x− αr∥ ∥x∥
∥x∥2

= ρ(A− λI)
∥x− αr∥

∥x∥
for all α ∈ R.

Hence, |R(x,A)− λ| ≤ ρ(A− λI)min
α

∥x−αr∥
∥x∥ = ρ(A− λI) sin∠(x, r)
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